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ABSTRACT

For many target optimization and learning tasks the sample
cost of performing the task is very expensive or time con-
suming such that attempting to directly employ a learning
algorithm on the task becomes intractable. For this reason
learning is instead often performed on a less expensive task
that is believed to be a reasonable approximation of the ac-
tual target task. This paper serves to present and motivate
the challenging open problem of simultaneously performing
learning on an approximation of the true target task, while
at the same time shaping the task used for learning to be
a better representation of the true target task. Our work,
which is still in progress, is performed in the RoboCup 3D
simulation environment where we attempt to learn walk pa-
rameters for an omnidirectional walk engine used by hu-
manoid robot soccer playing agents.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Parameter learn-

ing ; I.2.9 [Artificial Intelligence]: Robotics—Kinematics

and Dynamics

General Terms

Algorithms, Design, Experimentation

Keywords

Bipedal walking, Robot soccer, Machine learning, CMA-ES

1. INTRODUCTION
When trying to optimize a parameter set for some objec-

tive task, the question of how to evaluate and compare the
value of different parameter configurations is critical. Ide-
ally, we would like to know how to evaluate the value of any
single parameter set directly. More often than not, however,
there is no straightforward way to obtain a “magic number”
that signifies the value of a configuration. In such cases one
may resort to Monte Carlo methods in order to estimate the
value. The most common and practical way to do this in
many domains is by simulating the objective task repeat-
edly. However, there are cases in which even a limited scale
simulation as a means of evaluating the value of different
parameter configurations is infeasible computationally. In
such cases the only course of action would be to use some
surrogate function that is believed to be strongly correlated
to actual success in the objective task.

One way to achieve this is to learn a mapping from the
value of some surrogate function, that is more tractable com-
putationally, to the amount of success in the objective task,
based on a small empirical sample. This approach, albeit
enticing, is dangerous, because such global mapping may
not exist - the mapping may change as we transition from
one part of the parameter space to another. For example,
let us assume we are trying to optimize the parameter set of
an autonomous vehicle based on its performance in several
racetracks. We can estimate how the performance on the
racetracks correlates to the performance on a larger-scale
problem, for instance, driving in a small town. However,
as parameters change the behavior of the vehicle changes,
and we will inevitably see different mappings from racetrack
performance to larger-scale performance as the autonomous
vehicle changes its policy.

For this reason, in this paper we propose ideas on how
to optimize for a given task while simultaneously learning
how to reshape it as we traverse different parts of the pa-
rameter space. We focus our investigation on the RoboCup
3D simulation environment. In the simulation environment,
one of the most crucial aspects of agent gameplay is the
simulated robot walk. Optimizing the parameter set that
governs the walk has been one of the key challenges in this
domain [10]. Ideally, we would want to evaluate any param-
eter set directly on full 11v11 gameplay. However, that is
not computationally tractable. For this reason, in the past
we have trained an agent directly on an obstacle course,
comprised of 11 different activities. It has been empirically
proven that doing well on the obstacle course is correlated
with gameplay success. However, other approaches, such as
learning from infant walk trajectories [4], and learning to
optimize based on trajectories observed in real gameplay,
have proven less successful than the obstacle course. What
is it then about the obstacle course that makes it effective?
More exactly, which of the 11 different walking activities is
more significant in learning a successful walk, and could it
be that weighting the tasks differently would result in a bet-
ter parameter set? More interestingly, is it possible that in
different stages of the learning, different weighting schemes
would result in a better learning rate, and a better final
walk? In this paper, we address these issues and present
several approaches to tackling them.

The rest of the paper is structured as follows. Section 2
gives a domain description. Sections 3 and 4 describe our
agent’s omnidirectional walk engine and associated parame-
ters for optimization respectively. Section 5 details our walk
optimization tasks. In Section 6 we discuss and analyze the



weighting of activities in the context of our optimization
task. In Section 7 we present initial approaches and results
to the optimization task we have set forth. Section 8 details
approaches that we are currently in the process of exploring,
and Section 9 summarizes.

2. DOMAIN DESCRIPTION
Robot soccer has served as an excellent platform for test-

ing learning scenarios in which multiple skills, decisions, and
controls have to be learned by a single agent, and agents
themselves have to cooperate or compete. There is a rich
literature based on this domain addressing a wide spectrum
of topics from low-level concerns, such as perception and mo-
tor control [5, 11], to high-level decision-making problems [8,
12].

The RoboCup 3D simulation environment is based on
SimSpark [3], a generic physical multiagent system simula-
tor. SimSpark uses the Open Dynamics Engine [2] (ODE) li-
brary for its realistic simulation of rigid body dynamics with
collision detection and friction. ODE also provides support
for the modeling of advanced motorized hinge joints used in
the humanoid agents.

The robot agents in the simulation are homogeneous and
are modeled after the Aldebaran Nao robot [1], which has
a height of about 57 cm, and a mass of 4.5 kg. The agents
interact with the simulator by sending torque commands
and receiving perceptual information. Each robot has 22
degrees of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge
joints, an agent is equipped with joint perceptors and ef-
fectors. Joint perceptors provide the agent with noise-free
angular measurements every simulation cycle (20ms), while
joint effectors allow the agent to specify the torque and di-
rection in which to move a joint. Although there is no in-
tentional noise in actuation, there is slight actuation noise
that results from approximations in the physics engine and
the need to constrain computations to be performed in real-
time. Visual information about the environment is given to
an agent every third simulation cycle (60ms) through noisy
measurements of the distance and angle to objects within
a restricted vision cone (120◦). Agents are also outfitted
with noisy accelerometer and gyroscope perceptors, as well
as force resistance perceptors on the sole of each foot. Ad-
ditionally, agents can communicate with each other every
other simulation cycle (40ms) by sending messages limited
to 20 bytes. Figure 1 shows a visualization of the Nao robot
and the soccer field during a game.

3. WALK ENGINE
The UT Austin Villa 2012 team used an omnidirectional

walk engine based on one that was originally designed for
the real Nao robot [6]. The omnidirectional walk is cru-
cial for allowing the robot to request continuous velocities
in the forward, side, and turn directions, permitting it to
approach continually changing destinations (often the ball)
more smoothly and quickly than the team’s previous set of
unidirectional walks [13].

We began by re-implementing the walk for use on physi-
cal Nao robots before transferring it into simulation to com-
pete in the RoboCup 3D simulation league. Many people in
the past have used simulation environments for the purpose
of prototyping real robot behaviors; but to the best of our

knowledge, ours is the first work to use a real robot to proto-
type a behavior that was ultimately deployed in a simulator.
Working first on the real robots lead to some important dis-
coveries. For example, we found that decreasing step sizes
when the robot is unstable increases its chances of catching
its balance. Similarly, on the robots we discovered that the
delay between commands and sensed changes is significant,
and this realization helped us develop a more stable walk in
simulation.

The walk engine, though based closely on that of Graf
et al. [6], differs in some of the details. Specifically, unlike
Graf et al., we use a sigmoid function for the forward com-
ponent and use proportional control to adjust the desired
step sizes. Our work also differs from Graf et al. in that
we optimize parameters for a walk in simulation while they
do not. For the sake of completeness and to fully specify
the semantics of the learned parameters, we present the full
technical details of the walk in this section. Readers most
interested in the optimization procedure can safely skip to
Section 4. The walk engine uses a simple set of sinusoidal
functions to create the motions of the limbs with limited
feedback control. The walk engine processes desired walk
velocities chosen by the behavior, chooses destinations for
the feet and torso, and then uses inverse kinematics to de-
termine the joint positions required. Finally, PID controllers
for each joint convert these positions into torque commands
that are sent to the simulator.

The walk first selects a trajectory for the torso to follow,
and then determines where the feet should be with respect
to the torso location. We use x as the forwards dimension,
y as the sideways dimension, z as the vertical dimension,
and θ as rotating about the z axis. The trajectory is chosen
using a double linear inverted pendulum, where the center
of mass is swinging over the stance foot. In addition, as in
Graf et al.’s work [6], we use the simplifying assumption that
there is no double support phase, so that the velocities and
positions of the center of mass must match when switching
between the inverted pendulums formed by the respective
stance feet.

We now describe the mathematical formulas that calculate
the positions of the feet with respect to the torso. More than
40 walk engine parameters were used but only the ones we
optimize are listed in Table 1.

To smooth changes in the velocities, we use a simple pro-
portional controller to filter the requested velocities com-
ing from the behavior module. Specifically, we calculate
stepi,t+1 = stepi,t +δstep(desiredi,t+1− stepi,t)∀i ∈ {x, y, θ}.

Figure 1: A screenshot of the Nao humanoid robot
(left), and a view of the soccer field during a 11
versus 11 game (right).



Notation Description

maxStep{x,y,θ} Maximum step sizes allowed for x, y, and θ

yshift Side to side shift amount with no side velocity
ztorso Height of the torso from the ground
zstep Maximum height of the foot from the ground

fg
Fraction of a phase that the swing

foot spends on the ground before lifting
fa Fraction that the swing foot spends in the air
fs Fraction before the swing foot starts moving
fm Fraction that the swing foot spends moving

φlength Duration of a single step
δstep Factor of how fast the step sizes change
xoffset Constant offset between the torso and feet

xfactor
Factor of the step size applied to
the forwards position of the torso

δtarget{tilt,roll}
Factors of how fast tilt and roll
adjusts occur for balance control

ankleoffset
Angle offset of the swing leg foot

to prevent landing on toe
errnorm Maximum COM error before the steps are slowed
errmax Maximum COM error before all velocity reach 0

COMoffset Default COM forward offset

δCOM{x,y,θ}
Factors of how fast the COM changes x, y, and θ

values for reactive balance control

δarm{x,y}
Factors of how fast the arm x and y
offsets change for balance control

Table 1: Optimized parameters of the walk engine.

In addition, the value is cropped within the maximum step
sizes so that −maxStepi ≤ stepi,t+1 ≤ maxStepi.

The phase is given by φstart ≤ φ ≤ φend, and t =
φ − φstart

φend − φstart
is the current fraction through the phase. At

each time step, φ is incremented by ∆seconds/φlength, un-
til φ ≥ φend. At this point, the stance and swing feet
change and φ is reset to φstart. Initially, φstart = −0.5 and
φend = 0.5. However, the start and end times will change to
match the previous pendulum, as given by the equations

k =
p

9806.65/ztorso

α = 6 − cosh(k − 0.5φ)

φstart =

8

<

:

cosh−1(α)

0.5k
if α ≥ 1.0

−0.5 otherwise

φend = 0.5(φend − φstart)

The stance foot remains fixed on the ground, and the
swing foot is smoothly lifted and placed down, based on
a cosine function. The current distance of the feet from the
torso is given by

zfrac =

8

<

:

0.5(1 − cos(2π
t − fg

fa
)) if fg ≤ t ≤ fa

0 otherwise

zstance = ztorso

zswing = ztorso − zstep ∗ zfrac

It is desirable for the robot’s center of mass to steadily shift
side to side, allowing it to stably lift its feet. The side to
side component when no side velocity is requested is given
by

ystance = 0.5ysep + yshift(−1.5 + 0.5 cosh(0.5kφ))

yswing = ysep − ystance

where ysep is the distance between the feet. If a side velocity
is requested, ystance is augmented by

yfrac =

8

<

:

0 if t < fs

0.5(1 + cos(π t−fs

fm

)) if fs ≤ t < fs + fm

1 otherwise

∆ystance = stepy ∗ yfrac

These equations allow the y component of the feet to smoothly
incorporate the desired sideways velocity while still shifting
enough to remain dynamically stable over the stance foot.

Next, the forwards component is given by

s = sigmoid(10(−0.5 +
t − fs

fm
))

xfrac =

8

<

:

(−0.5 − t + fs) if t < fs

(−0.5 + s) if fs ≤ t < fs + fm

(0.5 − t + fs + fm) otherwise

xstance = 0.5 − t + fs

xswing = stepx ∗ xfrac

These functions are designed to keep the robot’s center of
mass moving forwards steadily, while the feet quickly, but
smoothly approach their destinations. Furthermore, to keep
the robot’s center of mass centered between the feet, there
is an additional offset to the forward component of both the
stance and swing feet, given by

∆x = xoffset + −stepxxfactor

After these calculations, all of the x and y targets are cor-
rected for the current position of the center of mass. Finally,
the requested rotation is handled by opening and closing the
groin joints of the robot, rotating the foot targets. The de-
sired angle of the groin joint is calculated by

groin =

8

>

<

>

:

0 if t < fs

1
2
stepθ(1 − cos(π

t − fs

fm
)) if fs ≤ t < fs + fm

stepθ otherwise

After these targets are calculated for both the swing and
stance feet with respect to the robot’s torso, the inverse
kinematics module calculates the joint angles necessary to
place the feet at these targets. Further description of the
inverse kinematic calculations is given in [6].

To improve the stability of the walk, we track the desired
center of mass as calculated from the expected commands.
Then, we compare this value to the sensed center of mass
after handling the delay between sending commands and
sensing center of mass changes of approximately 20ms. If
this error is too large, it is expected that the robot is un-
stable, and action must be taken to prevent falling. As the
robot is more stable when walking in place, we immediately
reduce the step sizes by a factor of the error. In the extreme
case, the robot will attempt to walk in place until it is stable.
The exact calculations are given by

err = max
i

(abs(comexpected,i − comsensed,i))

stepFactor = max(0, min(1,
err − errnorm

errmax − errnorm
))

stepi = stepFactor ∗ stepi ∀i ∈ {x, y, θ}

This solution is less than ideal, but performed effectively
enough to stabilize the robot in many situations.



4. OPTIMIZATION OF WALK ENGINE

PARAMETERS
As described in Section 3, the walk engine is parameter-

ized using more than 40 parameters. We initialize these
parameters based on our understanding of the system and
by testing them on an actual Nao robot.

The initial parameter values result in a very slow, but sta-
ble walk. Therefore, we optimize the parameters using the
CMA-ES (Covariance Matrix Adaptation Evolution Strat-
egy) algorithm [7], which has been successfully applied pre-
viously to a similar problem in [13]. CMA-ES is a policy
search algorithm that successively generates and evaluates
sets of candidates sampled from a multivariate Gaussian dis-
tribution. Once CMA-ES generates a group of candidates,
each candidate is evaluated with respect to a fitness mea-
sure. When all the candidates in the group are evaluated,
the mean of the multivariate Gaussian distribution is recal-
culated as a weighted average of the candidates with the
highest fitnesses. The covariance matrix of the distribution
is also updated to bias the generation of the next set of
candidates toward directions of previously successful search
steps. As CMA-ES is a parallel search algorithm, we were
able to leverage the department’s large cluster of high-end
computers to automate and parallelize the learning. This
allowed us to complete optimization runs requiring 420,000
evaluations in less than two days. This is roughly a 150
times speedup over not doing optimization runs in parallel
which would have taken over 100 days to complete.

As optimizing 40 real-valued parameters can be imprac-
tical, a carefully chosen subset of 25 parameters (shown in
Table 1) was selected for optimization while fixing all other
parameters. The chosen parameters are those that seemed
likely to have the highest potential impact on the speed and
stability of the robot.

5. WALK OPTIMIZATION TASKS
Ideally we would like to be able to optimize walk param-

eters for the omnidirectional walk engine directly over the
task of playing 11v11 soccer. Unfortunately the task of play-
ing a soccer game takes too much time, and requires too
much in the way of computational resources to have many
games being run in parallel on our computing cluster, for
this to be a feasible option. Instead we created an approxi-
mated task of playing soccer in which the agent is asked to
move to a series of target positions on the field in the form of
an obstacle course. This optimization task, which we refer
to as the goToTarget task, is described in Section 5.1. The
goToTarget task only takes about three minutes to run many
instances in parallel, as opposed to the several hours it takes
to run full games in parallel on our computing cluster.

Additionally we created a 4v4 task of playing soccer, de-
scribed in Section 5.2, which gives a better approximation
of playing a full 11v11 soccer game, but still takes around
20 minutes to run instances of this task in parallel on our
computing cluster. Because the 4v4 task takes so long we
only run it sparingly as a reference point to see how walk
parameters being learned might fair in a full game.

The goToTarget task is broken up into eleven different
activities shown in Figure 2. We would like to learn a set
of weights for the rewards given by each of these individual
activities, where the sum of the rewards of the activities
multiplied by their respective weights determines the overall

fitness of the agent on the goToTarget task, such that the
agent is able to learn walk parameters that perform better
on the 4v4 task.

rewardgoToTarget =
X

i∈[1,11]

wi · ri

where ri is the reward from the i-th activity and wi is its
weight.

5.1 Go to Target Optimization Task
In order to simulate common situations encountered in

gameplay, the walk engine parameters are optimized for a
goToTarget task.1 This task consists of an obstacle course
in which the agent tries to navigate to a variety of target
positions on the field. Each target is active, one at a time
for a fixed period of time, which varies from one target to
the next, and the agent is rewarded based on its distance
traveled toward the active target. If the agent reaches an
active target, the agent receives an extra reward based on
extrapolating the distance it could have traveled given the
remaining time on the target. In addition to the target
positions, the agent has stop targets, where it is penalized
for any distance it travels. To promote stability, the agent is
given a penalty if it falls over during the optimization run.

In the following equations specifying the agent’s rewards
for targets, Fall is 5 if the robot fell and 0 otherwise, dtarget

is the distance traveled toward the target, and dmoved is the
total distance moved. Let ttotal be the full duration a target
is active and ttaken be the time taken to reach the target or
ttotal if the target is not reached.

rewardtarget = dtarget
ttotal
ttaken

− Fall (1)

rewardstop = −dmoved − Fall (2)

The goToTarget optimization includes quick changes of
target/direction for focusing on the reaction speed of the
agent, as well as targets with longer durations to improve the
straight line speed of the agent. The stop targets ensure that
the agent is able to stop quickly, while remaining stable. The
trajectories that the agent follows during the optimization
are described in Figure 2.

5.2 4v4 Optimization Task
Instead of playing a full 11v11 game we instead play a sin-

gle half of a 4v4 game. A team is rewarded for both scoring
goals and also for moving the ball toward the opponent’s
goal. The reward function used for this task is

reward4v4 = goalsFor ∗
1

2
Field Length

−goalsAgainst ∗
1

2
Field Length

+avgBallXPosition

where avgBallXPosition is the average position of the ball
in the X (forward/backward) direction since the last goal
was scored or, if neither teams scores, the average position
of the ball from the beginning of the game. The position
values are relative to the distance from the midline of the

1Video of the agent performing the goToTarget optimization
task can be found at www.cs.utexas.edu/~AustinVilla/

sim/3dsimulation/AustinVilla3DSimulationFiles/

2011/html/walk.html



1. Long walks forward/backwards/left/right

2. Walk in a curve

3. Quick direction changes

4. Stop and go forward/backwards/left/right

5. Alternating moving left-to-right & right-to-left

6. Quick changes of target to simulate a noisy target

7. Weave back and forth at 45 degree angles

8. Extreme changes of direction to check for stability

9. Quick movements combined with stopping

10. Quick alternating between walking left and right

11. Spiral walk both clockwise and counter-clockwise

Figure 2: GoToTarget Optimization walk trajectories

field with negative position values in a team’s defensive half
of the field and positive values in the offensive half.

When running the 4v4 task we used a common fixed op-
ponent: a baseline agent optimized with the goToTarget

optimization task during which all activity rewards were
weighted equally.

6. THE WEIGHTING PROBLEM
In order to learn an effective walk, we thus far focused

on having the agent train on an obstacle course comprising
11 different walk trajectories (see Figure 2). The obstacle
course serves as a computationally tractable surrogate for
the 4v4 game task, by which we measure what we consider
to be the true fitness of a solution. Given that the different
walk trajectories are fixed, the most crucial aspect of the
obstacle course fitness approximation is the weighting. By
default, the aggregate reward obtained by each walk sample
is just the sum of rewards for each trajectory, meaning they
are all equally weighted.

It is extremely unlikely, however, that the 11 trajectories
are indeed equally important, implying that this is indeed
the optimal weighting. In other words, assuming each walk
trajectory task (or“activity”, as we refer to it from this point
onwards) contributes differently towards an effective walk,
than a better weighting scheme should produce a superior
result.

Table 2 presents the fitness of walks obtaining training on
single activities. They are all degraded compared to the walk
learned from combining the rewards, implying that indeed
at least a mix of different activities is required to learn an
effective walk. The fitnesses vary quite heavily, however,
implying that each activity does contribute differently to
the final result. We note in Section 7.1 that a baseline agent
trained on the entire set of equally weighted activities should
have an expected 4v4 game fitness of 0.

Another crucial observation is that different weighting
schemes for the various activities do matter in terms of the
fitness of the walk learned. To illustrate this point, we first
compare the fitnesses of walks trained on all activities except
one (i.e. “knocking-out” one activity at a time and combin-
ing the rest - a [1, 1, . . . , 0, 1, . . . , 1] weighting scheme) in
Table 3. While removing some activities (3 and 4) harms
the fitness considerably, in two cases (activities 1 and 8) it
seems that removing the activities actually contributes to

Activity Fitness StdErr

1 -26.9605623276 1.29619603248
2 -31.250364697 1.08828864978
3 -26.2453386308 1.15218299104
4 -23.7791771111 1.07371662994
5 -65.9514994776 1.28455077906
6 -66.0047726619 0.91150218967
7 -44.4248067669 1.15508047473
8 -79.6944283186 0.940911592582
9 -80.1612411765 0.815991750977
10 -68.7431571429 0.958372832705
11 -82.8619171642 0.928203179673

Table 2: The fitness obtained from learning on each
activity in the obstacle course separately (# genera-
tions = 400). All the fitnesses are negative, meaning
they are inferior compared to the walk trained on a
combination of all activities. It is clear however that
different activities lead to much better walks com-
pared to others (1, 3 and 4 compared to 8 and 9, for
instance). This leads us to the conclusion that they
contribute differently to the overall walk fitness.

the fitness. This further strengthens our intuition that the
current weighting scheme is suboptimal, and that we would
like to find a good way of learning better weights as we op-
timize for the original task.

Removed Activity Fitness StdErr

1 5.14204210992 1.34800057635
2 1.52892855814 1.38832807929
3 -23.0764260492 1.46600109146
4 -12.437155757 1.54833200304
5 0.180571428689 1.46645622415
6 1.80133529091 1.52815390984
7 -0.996885825397 1.23685369536
8 4.26231683333 1.75793256622
9 -7.97918691071 1.29305579673
10 2.47325064844 1.50828940856
11 2.40324721429 1.42510368531

Table 3: The fitness obtained from learning on all
activities except one (# generations = 400). Dif-
ferent activities detract differently from the overall
fitness once removed. In two cases (activities 1 and
8) it seems that removing the activities actually con-
tributes to the fitness.

Lastly, we note that changing the weights does matter
even when they are all positive. To prove this point, we
compare the fitnesses of walks learned on all the activities
when one of the activities is given a double weight compared
to the others (i.e. a [1, 1, . . . , 2, 1, . . . , 1] weighting scheme)
in Table 4. In certain cases doubling the weight of an ac-
tivity can have a negative effect on the overall fitness (for
instance, activity 10), whereas it sometimes improves fitness
somewhat (as is the case for activities 2 and 4). Interest-
ingly, while removing activity 9 harmed the fitness (it’s value
after removal was -7.98), doubling it also harms the fitness
somewhat ( -3.07).



Doubled Activity Fitness StdErr

1 1.12573153279 1.53372958915
2 5.2379902459 1.2398576484
3 -0.372906246032 1.37630012203
4 4.71968851008 1.44316311066
5 -3.65889347287 1.52761938361
6 -1.32128969672 1.41529373379
7 5.32546797479 1.45144844538
8 -6.35841603361 1.26643719415
9 -3.07685847934 1.30071004926
10 -18.182396626 1.32485039788
11 4.20284932422 1.51572553484

Table 4: The fitness obtained from learning on all
activities with a double weight on one of them (#
generations = 400). Different activities affect the
overall fitness differently once doubled. In certain
cases doubling the weight of an activity has adverse
affects (for instance, activity 10) and in some cases it
improves the fitness (activities 2 and 4, for instance).

7. INITIAL APPROACHES AND RESULTS

7.1 Baseline
Our baseline for any attempt to improve on the approxi-

mation of game fitness is the standard obstacle course. Using
the rewards obtained from the obstacle course, the learning
converges after ∼200 generations, leading to a game fitness
that is 0 in expectation (this should come as no surprise, as
the 4v4 game fitness is estimated against the walk learned
using the obstacle course). Figure 3 presents the learning
rate for the baseline - the growth of average game fitness
over generations.
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Figure 3: Learning rate for baseline walk. Error
bars show the standard error.

7.2 Linear Regression
Perhaps the most straightforward approach to assigning

weights to the rewards obtained in each activity is to find
how the rewards can best be combined to predict 4v4 game
fitness. To do this, we apply multivariate linear regression

at each step to find the coefficients which solve Rw − f =
0 with R being the 11Xpopulation size reward matrix at
each generation, f being the fitness vector, and w being the
weight coefficients which we are trying to solve. We can do
this whenever we evaluate 4v4 game fitnesses, and adjust
our weights accordingly.

Unfortunately, the weights may often be negative. This
can be either the result of the inherent noise in our learn-
ing process, or because in certain contexts, doing well on
a certain task i might be at the expense of doing well on
another task, j, and if j is more dominantly correlated to
game fitness, a negative coefficient for i might ensue. Nega-
tive weights are detrimental because in effect they encourage
the optimization to do poorly on certain tasks. For this rea-
son, different variations of this approach were implemented.

7.3 Linear Regression with Negative Weights
Elimination

Given that a simple linear regression would return neg-
ative coefficients, a straightforward approach would be to
cap negatively weighted rewards at 0. Thus the optimiza-
tion does not obtain a reward for failing in a task but is not
directly encouraged to succeed in it, as the aggregate reward
is only determined by the rewards gained in other activities.

The growth of fitnesses over generations (as measured on
4v4 games) using this approach is shown in Figure 4. While
learning is evident, the algorithm seems to reach convergence
after ∼150 generations and remains sub-par compared to the
baseline obstacle course approach.

0 50 100 150 200 250 300 350 400
generations

�80

�70

�60

�50

�40

�30

�20

�10

0

10

av
er

ag
e 

ga
m

e 
fit

ne
ss

regression
baseline

Figure 4: Learning rate for regression based weight-
ing with negative weight elimination, compared to
the baseline. Error bars show the standard error.

Let R∗ be the subset of the rewards matrix that is only
comprised of positively weighted columns. Let w∗ be the
vector of positive weights for these columns. The drawback
of the approach proposed above is that w∗ does not solve
R∗w∗− f = 0 and there is no reason to assume it minimizes
R∗w∗ − f .

7.4 Non-Negative Linear Regression
A different, more rigorous approach to the negative coef-

ficients problem is to directly solve the Rw − f = 0 least



squares regression problem subject to the constraints that
∀i.wi >= 0. This kind of regression is known as non-negative
least squares (NNLS)[9], and can be solved using quadratic
programming.

Empirically, however, we discovered that after ∼120 gen-
erations the regression converges to ∀i.wi = 0 coefficients,
essentially terminating the process of learning.

7.5 Bounded Linear Regression
To circumvent the problem of converging to ∀i.wi = 0,

a different approach would be to prevent the weights from
dropping below a certain positive value. Along the same
lines, one might not perhaps want the proportions between
the weights to be too extreme, effectively cancelling out some
activities compared to the effect of others on the total aggre-
gate reward. This implies solving the least squares problem
Rw − f = 0 with respect to the constraints

∀i.minw ≤ wi ≤ maxw

For any chosen set of parameters maxw, mini. This, too,
can be solved directly using quadratic programming[9].

Empirically, however, after ∼150 generations the algo-
rithm converges to ∀i.wi = 1, which is equivalent to the ob-
stacle course default, making any attempts at further opti-
mization uninteresting.

7.6 Caveat in Least Squares Approach
The correlation between game fitnesses and aggregate re-

ward is dependent on three things: the rewards for individ-
ual activities, and their weighting. The rewards for indi-
vidual activities are in turn dependent on the learning of
the CMA-ES algorithm. As the population gets better at
the task, we expect the correlation to increase. However,
any correlation relies on the variance in the population be-
ing more dominant than the random noise inherent in any
of the estimations. Therefore, as the population converges,
the noise becomes increasingly more dominant in the cor-
relation, reducing its value, up to the point of convergence,
where we are implicitly correlating random noise, with the
expectation of 0. At this point, any least-squares solution
would be essentially meaningless. Ironically, the better the
population gets, the harder it is to derive meaningful weights
for single activity rewards from our data.

This observation is clearly evident in Figure 5, we can see
that as the population variance decreases, the correlation
between game fitness and the accumulated reward decreases.
However, we know that at this point the CMA-ES algorithm
has converged to a fairly successful parameter configuration,
and that this is an artifact of the per-generation correlation
based approach.

8. APPROACHES IN PROGRESS
Following the observations described in the previous sec-

tion, we have devised several new approaches meant to over-
come some of the difficulties posed by simple regression-
based approaches.

8.1 Correlation Based Approach
A wholly different approach that has been implemented

and is currently being tested is the following. Since the sam-
ples at a single generations are extremely noisy both with
respect to the game fitness evaluation and the estimation
of the rewards, at each game evaluation phase we estimate
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Figure 5: Correlation between game fitness and re-
ward vs. variance

the standard Pearson correlation between the entire set of
rewards observed for a given activity i and the entire set of
game fitnesses, as observed for all the generations in which
game fitness was evaluated. This kind of aggregate method
drastically reduces the noise as we progress, and is hinged
on the observation that even as population samples change
the information obtained in previous generations is still valu-
able. This approach is also less likely to be susceptible to the
phenomenon of population convergence described in 7.6, at
least until population convergence is dominant across many
generations, which does not happen in the current setting.

Initial results for this approach can be seen in Figure 6,
where the growth of fitness over generations (as measured on
4v4 games) is shown. While the results are still preliminary,
it seems that learning is still ongoing up to ∼200 generations,
also somewhat improving on the naive regression-based re-
sults in Section 7.3.
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Figure 6: Learning rate for the correlation-based
weighting approach. Error bars show the standard
error.



8.2 Confidence-Based Weight Update
Another approach, which we are also testing at the mo-

ment, relies on the assumption that the weighting from
previous generations of the CMA-ES run might still hold
valuable information (similar to the key observation in Sec-
tion 8.1). More importantly, after finding new weight coef-
ficients using linear regression, it only adjusts the current
weights to the extent it trusts the correlation between the
rewards and the fitnesses. The stronger it is, the more we
update. Thus, after each game fitness evaluation, our weight
update scheme is wnew

i = max(wold
i + |ρi| · (w

r
i −wold

i ), 0.1),
where ρi stands for the correlation between obtained rewards
and game fitnesses for the i-th activity, and wr

i is the coef-
ficient for the i-th activity rewards obtained via linear re-
gression. The weights are kept at > 0.1 to avoid their con-
vergence to ∀i.wi = 0 as we’ve seen for the NNLS approach
(see Section 7.4).

8.3 Ranking Approach
One of the risks when working with weighted aggregate

rewards is that in some cases the rewards from some activi-
ties may completely dominate the aggregate reward in a way
that is not mitigated by the weighting scheme, especially if
the weighting is done based on correlation. Another key
observation is that the CMA-ES algorithm does not rely
on specific values, only on the ranking of the population
which they induce. Therefore, a possible way to mitigate
this would be to use ranks directly, instead of reward values.
In this scheme, we take the ranks of the population across
the different activities and aggregate them into a ranking in
the following way:

rewardj =
X

i

wi

1

rankj
i

where rewardj is the reward for the j-th sample in the pop-
ulation, rankj

i is the reward for this sample in the i-th ac-
tivity, and wi is the weighting of this activity.

This essentially obtains the aggregate inverse ranking of
the population. The ranking is inverted so that the setting
remains a maximization problem.

Several weighting approaches are currently being tested:

• Pearson correlation - This approach is essentially sim-
ilar to that proposed in 8.1.

• Spearman’s rank correlation - since the measurements
we are correlating may be extremely noisy, we are also
calculating correlation weights based on Spearman’s
rank correlation which correlates the rank vectors of
the game fitnesses and the activity rewards, obtaining
a more robust correlation score that is less sensitive to
individual values.

• Wilcoxon’s t-test - This measure utilizes Wilcoxon’s t-
test, to test the hypothesis that the population mean
ranks of the activity rewards and the game fitnesses
are equal, obtaining a p-value that is used to obtain
the weight.

9. SUMMARY
We have presented the problem and challenge of simulta-

neously performing learning on an approximation of a target

optimization task, while at the same time shaping the task
used for learning to be a better representation of the true
target optimization task. In the coming weeks we intend to
further explore and analyze the approaches we have outlined
for learning walk parameters for an omnidirectional walk in
the RoboCup 3D simulation domain. For future work we
would like to discover ways to dynamically create useful new
trajectories for our obstacle course optimization task in ad-
dition to varying how we weight different preexisting parts
of the task.
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